Lithium Research TSG Strategy FY10

21 XP ideas total (excl. 5-6 days LLD commissioning)		Min run days	Max run days	Allocated run days
Particle control	5 XPs	3.5	6	
Impurity control	6 XPs	3	6.1	
Other	10 XPs	3.1	7	
Totals:	21	9.6	19.1	5.5 priority 1 2.5 priority 2

Good to see lots of fresh ideas from new students and post docs.

Expect to be nimble after first results from LLD commissioning.

Q. Demarcation between lithium research and other TSGs?

A. LRTSG emphasis is on the 'M' in PMI:

LLD related issues

Li development e.g. dropper, evaporation into He, evaporation from LLD XPs to diagnose <u>sources</u> of impurities

Tests/challenges of Li-related theory and modeling.

Lithium Research TSG Strategy FY10

21 XP ideas total (excl. 5-6 days LLD commissioning)		Min run days	Max run days	Allocated run days
Particle control	5 XPs	3.5	6	3 priority 1
Impurity control	6 XPs	3	6.1	2.5 priority 1
Other	10 XPs	3.1	7	2.5 priority 2
Totals:	21	9.6	19.1	5.5 priority 1
				2.5 priority 2

Good to see lots of fresh ideas from new students and post docs.

Note some impurity related XPs in the ASC group.

1. Particle Control

- 1. Optimization of High-In Scenarios at Reduced Density (Gerhardt)
- 2. Qualification of LLD Operation at Various Levels of Plasma (Gerhardt)
- 3. High resolution measurements of modifications to edge parameters by lithium PFC coatings (Kallman)
- 4. D retention with LLD (Skinner)
- 5. Recycling and Pumping characterization of the LLD-1 module (Soukhanovskii)

Some had overlapping requirements (but not enough individual run time) It was decided to combine the above into a group XP of 3 days Meetings are planned to develop the shot list both before the run and after LLD commissioning.

2. Impurity Control

- 1. Study of Neoclassical Transport Mechanisms of High Z Impurities (Gray)
 - Piggyback if other high-Z gas injection.
- 2. Can Impurities be Purged from the Core by Allowing Early Elms with Shaping and Eliminating Later ELMs with Aerosol ? (Mansfield)
 - 0.75 day with #3
- 3. Understanding _ Eliminating High-Z Accumulation During ELM-Free H-Modes. (Mansfield)
 - Combine with #2.
- 4. Impurity Reduction by Diffusive Li Injection. (Skinner)
 - 0.75 day (some overlap with Dropper).
- 5. Core impurity density and radiated power reduction using variations in LLD divertor conditions. (Soukhanovskii)
 - 1 day.
- 6. Validation of DEGAS 2 Model for Li He Diffusive Evaporation (Stotler)
 - Piggyback offline and with #4.

3. Other

- 1. Novel Concept for Measurement of Deposited Lithium Films on NSTX (Abrams)
 - No time requested.
- 2. Disruption Characteristics with a Warm LLD (Gerhardt)
 - More suited to Macroscopic Stability
- 3. Evaporating lithium into the SOL to reduce heat fluxes (Gray)
 - 0.5 days

•

- Effective SOL particle lifetime and generation of SOLC and effects on edge. (Jaworski)
 - Combine with #10.
- 5. Experiments on the physics of hot spots. (Krasheninnikov)
 - piggyback.
- 6. LLD-1 Decommissioning (Kugel)
 - 0.5 days with #9.
- 7. Characterization of the LLD with a two-color infrared camera (McLean)
 - 0.5 days
- 8. Creation of a disruption database during LLD operation (McLean)
 - 0.5 days
- 9. Study of Li condensation in NSTX (McLean)
 - Combine with #6
- 10. Mapping of Te along Divertor Surfaces for Studying Lithium Effect on SOLC and ELMs (Takahashi)
 - 0.5 days

	max days request	min days request		priority 2		Impurity	ITPA/ ITER	R11-3	Title	
LLD Commis		request	-		control	control				
Kugel	6	5						\checkmark	LLD-1 Commissioning.rtf	
Particle Cont	rol								Aim: CDX level recycling coefficient ?	
Gerhardt	1	0			√		V	\checkmark	Optimization of High-In Scenarios at Reduced Density.rtf	
Gerhardt	1	1							Qualification of LLD Operation at Various Levels of Plasma	
Kallman	1	0.5	0		\checkmark			V	High resolution measurements of modifications to edge pa	
Skinner	2	1	1		V			v	D retention with LLD.rtf	
Soukhanovski		1		-	v			V	Recycling and Pumping characterization of the LLD-1 mod	
total	6	3.5								
7.7.7	proposed t		3						3-day Group XP Stefan, Mike, Vlad, Charles, Josh, Micha	
	actual tota		3	0						
Impurity con									Aim: Zeff < 2 @ 1s ?	
Gray	1	0				√		V	Study of Neoclassical Transport Mechanisms of High Z Im	
Mansfield	1	0.5	0			V		V	Can Impurities be Purged from the Core by Allowing Early	
Mansfield	1	0.5	0.75			V		V	Understanding _ Eliminating High-Z Accumulation During E	
Skinner	2	1	0.75				√ (ELMs)	V	Impurity Reduction by Diffusive Li Injection.rtf	
Soukhanovski		1	1			V		V	Core impurity density and radiated power reduction using	
Stotler	0.1	0				V			Validation of DEGAS 2 Model for Li - He Diffusive Evaporat	
total	6.1	3								
	proposed t	otal	2.5							
	actual total		2.5	0						
Other									Aim: Understanding ?	
Abrams	0	0						V	Novel Concept for Measurement of Deposited Lithium Film	
Gerhardt	0.5	0							Disruption Characteristics with a Warm LLD	
Gray	2	1	1	0.5				~	Evaporating lithium into the SOL to reduce heat fluxes.	
Jaworski	1	0.5		moved				V	Effective SOL particle lifetime and generation of SOLC an	
Krasheninniko	na	na	1	piggybac	na	na	na	na	Experiments on the physics of hot spots .rtf	
Kugel	1	0.5		0.5				\checkmark	LLD-1 Decommissioning.rtf	
McLean	1	0.5	1	0.5				\checkmark	Characterization of the LLD with a two-color infrared can	
McLean	0.5	0		0.5				\checkmark	Creation of a disruption database during LLD operation.rtf	
McLean	0.5	0.5		piggybac	k			√	Study of Li condensation in NSTX .rtf	
Takahashi	0.5	0.1	1	0.5				na	Mapping of Te along Divertor Surfaces for Studying Lithiu	
	7	3.1	1							
	proposed t	otal		2.5					Aim: Design LLD2 ?	
			0	2.5						
	GRAND TOTAL		5.5	2.5						